1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
use crate::{SignableTransaction, Signed, Transaction, TxType};
use alloy_eips::eip2930::AccessList;
use alloy_primitives::{keccak256, Bytes, ChainId, Signature, TxKind, U256};
use alloy_rlp::{length_of_length, BufMut, Decodable, Encodable, Header};
use core::mem;

#[cfg(not(feature = "std"))]
use alloc::vec::Vec;

/// Transaction with an [`AccessList`] ([EIP-2930](https://eips.ethereum.org/EIPS/eip-2930)).
#[derive(Clone, Debug, Default, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "serde", serde(rename_all = "camelCase"))]
#[doc(alias = "Eip2930Transaction", alias = "TransactionEip2930", alias = "Eip2930Tx")]
pub struct TxEip2930 {
    /// Added as EIP-pub 155: Simple replay attack protection
    #[cfg_attr(feature = "serde", serde(with = "alloy_serde::quantity"))]
    pub chain_id: ChainId,
    /// A scalar value equal to the number of transactions sent by the sender; formally Tn.
    #[cfg_attr(feature = "serde", serde(with = "alloy_serde::quantity"))]
    pub nonce: u64,
    /// A scalar value equal to the number of
    /// Wei to be paid per unit of gas for all computation
    /// costs incurred as a result of the execution of this transaction; formally Tp.
    ///
    /// As ethereum circulation is around 120mil eth as of 2022 that is around
    /// 120000000000000000000000000 wei we are safe to use u128 as its max number is:
    /// 340282366920938463463374607431768211455
    #[cfg_attr(feature = "serde", serde(with = "alloy_serde::quantity"))]
    pub gas_price: u128,
    /// A scalar value equal to the maximum
    /// amount of gas that should be used in executing
    /// this transaction. This is paid up-front, before any
    /// computation is done and may not be increased
    /// later; formally Tg.
    #[cfg_attr(feature = "serde", serde(with = "alloy_serde::quantity"))]
    pub gas_limit: u128,
    /// The 160-bit address of the message call’s recipient or, for a contract creation
    /// transaction, ∅, used here to denote the only member of B0 ; formally Tt.
    #[cfg_attr(feature = "serde", serde(default, skip_serializing_if = "TxKind::is_create"))]
    pub to: TxKind,
    /// A scalar value equal to the number of Wei to
    /// be transferred to the message call’s recipient or,
    /// in the case of contract creation, as an endowment
    /// to the newly created account; formally Tv.
    pub value: U256,
    /// The accessList specifies a list of addresses and storage keys;
    /// these addresses and storage keys are added into the `accessed_addresses`
    /// and `accessed_storage_keys` global sets (introduced in EIP-2929).
    /// A gas cost is charged, though at a discount relative to the cost of
    /// accessing outside the list.
    pub access_list: AccessList,
    /// Input has two uses depending if transaction is Create or Call (if `to` field is None or
    /// Some). pub init: An unlimited size byte array specifying the
    /// EVM-code for the account initialisation procedure CREATE,
    /// data: An unlimited size byte array specifying the
    /// input data of the message call, formally Td.
    pub input: Bytes,
}

impl TxEip2930 {
    /// Calculates a heuristic for the in-memory size of the [TxEip2930] transaction.
    #[inline]
    pub fn size(&self) -> usize {
        mem::size_of::<ChainId>() + // chain_id
        mem::size_of::<u64>() + // nonce
        mem::size_of::<u128>() + // gas_price
        mem::size_of::<u64>() + // gas_limit
        self.to.size() + // to
        mem::size_of::<U256>() + // value
        self.access_list.size() + // access_list
        self.input.len() // input
    }

    /// Decodes the inner [TxEip2930] fields from RLP bytes.
    ///
    /// NOTE: This assumes a RLP header has already been decoded, and _just_ decodes the following
    /// RLP fields in the following order:
    ///
    /// - `chain_id`
    /// - `nonce`
    /// - `gas_price`
    /// - `gas_limit`
    /// - `to`
    /// - `value`
    /// - `data` (`input`)
    /// - `access_list`
    pub(crate) fn decode_fields(buf: &mut &[u8]) -> alloy_rlp::Result<Self> {
        Ok(Self {
            chain_id: Decodable::decode(buf)?,
            nonce: Decodable::decode(buf)?,
            gas_price: Decodable::decode(buf)?,
            gas_limit: Decodable::decode(buf)?,
            to: Decodable::decode(buf)?,
            value: Decodable::decode(buf)?,
            input: Decodable::decode(buf)?,
            access_list: Decodable::decode(buf)?,
        })
    }

    /// Outputs the length of the transaction's fields, without a RLP header.
    #[doc(hidden)]
    pub fn fields_len(&self) -> usize {
        let mut len = 0;
        len += self.chain_id.length();
        len += self.nonce.length();
        len += self.gas_price.length();
        len += self.gas_limit.length();
        len += self.to.length();
        len += self.value.length();
        len += self.input.0.length();
        len += self.access_list.length();
        len
    }

    /// Encodes only the transaction's fields into the desired buffer, without a RLP header.
    pub(crate) fn encode_fields(&self, out: &mut dyn BufMut) {
        self.chain_id.encode(out);
        self.nonce.encode(out);
        self.gas_price.encode(out);
        self.gas_limit.encode(out);
        self.to.encode(out);
        self.value.encode(out);
        self.input.0.encode(out);
        self.access_list.encode(out);
    }

    /// Returns what the encoded length should be, if the transaction were RLP encoded with the
    /// given signature, depending on the value of `with_header`.
    ///
    /// If `with_header` is `true`, the payload length will include the RLP header length.
    /// If `with_header` is `false`, the payload length will not include the RLP header length.
    pub(crate) fn encoded_len_with_signature(
        &self,
        signature: &Signature,
        with_header: bool,
    ) -> usize {
        // this counts the tx fields and signature fields
        let payload_length = self.fields_len() + signature.rlp_vrs_len();

        // this counts:
        // * tx type byte
        // * inner header length
        // * inner payload length
        let inner_payload_length =
            1 + Header { list: true, payload_length }.length() + payload_length;

        if with_header {
            // header length plus length of the above, wrapped with a string header
            Header { list: false, payload_length: inner_payload_length }.length()
                + inner_payload_length
        } else {
            inner_payload_length
        }
    }

    /// Inner encoding function that is used for both rlp [`Encodable`] trait and for calculating
    /// hash that for eip2718 does not require a rlp header
    #[doc(hidden)]
    pub fn encode_with_signature(
        &self,
        signature: &Signature,
        out: &mut dyn BufMut,
        with_header: bool,
    ) {
        let payload_length = self.fields_len() + signature.rlp_vrs_len();
        if with_header {
            Header {
                list: false,
                payload_length: 1 + Header { list: true, payload_length }.length() + payload_length,
            }
            .encode(out);
        }
        out.put_u8(self.tx_type() as u8);
        self.encode_with_signature_fields(signature, out);
    }

    /// Encodes the transaction from RLP bytes, including the signature. This __does not__ encode a
    /// tx type byte or string header.
    ///
    /// This __does__ encode a list header and include a signature.
    pub(crate) fn encode_with_signature_fields(&self, signature: &Signature, out: &mut dyn BufMut) {
        let payload_length = self.fields_len() + signature.rlp_vrs_len();
        let header = Header { list: true, payload_length };
        header.encode(out);
        self.encode_fields(out);
        signature.write_rlp_vrs(out);
    }

    /// Decodes the transaction from RLP bytes, including the signature.
    ///
    /// This __does not__ expect the bytes to start with a transaction type byte or string
    /// header.
    ///
    /// This __does__ expect the bytes to start with a list header and include a signature.
    #[doc(hidden)]
    pub fn decode_signed_fields(buf: &mut &[u8]) -> alloy_rlp::Result<Signed<Self>> {
        let header = Header::decode(buf)?;
        if !header.list {
            return Err(alloy_rlp::Error::UnexpectedString);
        }

        // record original length so we can check encoding
        let original_len = buf.len();

        let tx = Self::decode_fields(buf)?;
        let signature = Signature::decode_rlp_vrs(buf)?;

        let signed = tx.into_signed(signature);
        if buf.len() + header.payload_length != original_len {
            return Err(alloy_rlp::Error::ListLengthMismatch {
                expected: header.payload_length,
                got: original_len - buf.len(),
            });
        }

        Ok(signed)
    }

    /// Get transaction type.
    #[doc(alias = "transaction_type")]
    pub const fn tx_type(&self) -> TxType {
        TxType::Eip2930
    }
}

impl Transaction for TxEip2930 {
    fn chain_id(&self) -> Option<ChainId> {
        Some(self.chain_id)
    }

    fn nonce(&self) -> u64 {
        self.nonce
    }

    fn gas_limit(&self) -> u128 {
        self.gas_limit
    }

    fn gas_price(&self) -> Option<u128> {
        Some(self.gas_price)
    }

    fn to(&self) -> TxKind {
        self.to
    }

    fn value(&self) -> U256 {
        self.value
    }

    fn input(&self) -> &[u8] {
        &self.input
    }
}

impl SignableTransaction<Signature> for TxEip2930 {
    fn set_chain_id(&mut self, chain_id: ChainId) {
        self.chain_id = chain_id;
    }

    fn encode_for_signing(&self, out: &mut dyn BufMut) {
        out.put_u8(self.tx_type() as u8);
        Header { list: true, payload_length: self.fields_len() }.encode(out);
        self.encode_fields(out);
    }

    fn payload_len_for_signature(&self) -> usize {
        let payload_length = self.fields_len();
        // 'transaction type byte length' + 'header length' + 'payload length'
        1 + Header { list: true, payload_length }.length() + payload_length
    }

    fn into_signed(self, signature: Signature) -> Signed<Self> {
        let mut buf = Vec::with_capacity(self.encoded_len_with_signature(&signature, false));
        self.encode_with_signature(&signature, &mut buf, false);
        let hash = keccak256(&buf);

        // Drop any v chain id value to ensure the signature format is correct at the time of
        // combination for an EIP-2930 transaction. V should indicate the y-parity of the
        // signature.
        Signed::new_unchecked(self, signature.with_parity_bool(), hash)
    }
}

impl Encodable for TxEip2930 {
    fn encode(&self, out: &mut dyn BufMut) {
        Header { list: true, payload_length: self.fields_len() }.encode(out);
        self.encode_fields(out);
    }

    fn length(&self) -> usize {
        let payload_length = self.fields_len();
        length_of_length(payload_length) + payload_length
    }
}

impl Decodable for TxEip2930 {
    fn decode(data: &mut &[u8]) -> alloy_rlp::Result<Self> {
        let header = Header::decode(data)?;
        let remaining_len = data.len();

        if header.payload_length > remaining_len {
            return Err(alloy_rlp::Error::InputTooShort);
        }

        Self::decode_fields(data)
    }
}

#[cfg(test)]
mod tests {
    use super::TxEip2930;
    use crate::{SignableTransaction, TxEnvelope};
    use alloy_primitives::{Address, Signature, TxKind, U256};
    use alloy_rlp::{Decodable, Encodable};

    #[test]
    fn test_decode_create() {
        // tests that a contract creation tx encodes and decodes properly
        let tx = TxEip2930 {
            chain_id: 1u64,
            nonce: 0,
            gas_price: 1,
            gas_limit: 2,
            to: TxKind::Create,
            value: U256::from(3_u64),
            input: vec![1, 2].into(),
            access_list: Default::default(),
        };
        let signature = Signature::test_signature();

        let mut encoded = Vec::new();
        tx.encode_with_signature_fields(&signature, &mut encoded);

        let decoded = TxEip2930::decode_signed_fields(&mut &*encoded).unwrap();
        assert_eq!(decoded, tx.into_signed(signature));
    }

    #[test]
    fn test_decode_call() {
        let request = TxEip2930 {
            chain_id: 1u64,
            nonce: 0,
            gas_price: 1,
            gas_limit: 2,
            to: Address::default().into(),
            value: U256::from(3_u64),
            input: vec![1, 2].into(),
            access_list: Default::default(),
        };

        let signature = Signature::test_signature();

        let tx = request.into_signed(signature);

        let envelope = TxEnvelope::Eip2930(tx);

        let mut encoded = Vec::new();
        envelope.encode(&mut encoded);
        assert_eq!(encoded.len(), envelope.length());

        assert_eq!(
            alloy_primitives::hex::encode(&encoded),
            "b86401f8610180010294000000000000000000000000000000000000000003820102c080a0840cfc572845f5786e702984c2a582528cad4b49b2a10b9db1be7fca90058565a025e7109ceb98168d95b09b18bbf6b685130e0562f233877d492b94eee0c5b6d1"
        );

        let decoded = TxEnvelope::decode(&mut encoded.as_ref()).unwrap();
        assert_eq!(decoded, envelope);
    }
}